
AD-A256 365

Grammatical Trigrams:
A Probabilistic Model of Link Grammar *

John Laferty f Daniel Sleator t Davy Temperley §
September 1992

.... CMU-CS-92-181

SELECTtl-

OCT 0 81992 D
A School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

In this paper we present a new class of language models. This class derives from link grammar,
a context-free formalism for the description of natural language. We describe an algorithm for
determining maximum-likelihood estimates of the parameters of these models. The language models
which we present differ from previous models based on stochastic context-free grammars in that
they are highly lexical. In particular, they include the familiar n-gram models as a natural subclass.
The motivation for considering this class is to estimate the contribution which grammar can make
to reducing the relative entropy of natural language.

h 92-26741
92 10 7 0)92 S. flflU \w(ý

To appear in Proc. of the 1992 AAAI Fall Symp. on Probabilistic Approaches to Natural Language.

t IBM Thomas J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, jlalf@.atson. ibA.com.

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, sleatorlcs.cau.*du.

Music Department, Columbia University, New York, NY 10027, dt3tcunixa.cc.coluabia.edu.

Keywords: Natural language processing, probabalistic models of language, entropy of English,
trro,-,M

Introduction

Finite-state methods occupy a special position in the realm of probabilistic models of natural
language. In particular, the simplicity, and simple-mindedness, of the trigram model renders it
especially well-suited to parameter estimation over hundreds of millions of words of data, resulting
in models whose predictive powers have yet to be seriously contested. It has only been through
variations on the finite-state theme, as realized in cached models, for example, that significant
improvements have been made. This state of affairs belies our linguistic intuition, as it beguiles
our scientific sensibilities.

In the most common probabilistic model of context-free phrase structure grammar [8], the pa-
rameters are the probabilities PA(A --* B C) and PA(A -+* w), where A, B and C are nonterminals,
and w is a terminal symbol. For natural language, experience has shown that this model only
weakly captures contextual dependencies, even if the set of nonterminals is sufficiently rich to en-
code lexical information, a goal toward which many unification-based grammars strive [4]. More
to the point, the cross-entropies of language models constructed from probabilistic grammars have
so far been well above the cross-entropies of trigram language models [3, 6, 14].

Link grammar is a new context-free formalism for natural language proposed in [13]. What
distinguishes this formalism from many other context-free models is the absence of explicit con-
stituents, as well as a high degree of lexicalization. It is this latter property which makes link
grammar attractive from the point-of-view of probabilistic modeling.

Of course, several grammatical formalisms besides link grammar have been proposed which are
highly lexical. One such example is lexicalized tree adjoining grammar [12], which is in fact weakly
context sensitive in generative power. While this formalism is promising for statistical language
modeling, the relative inefficiency of the training algorithms limits the scope of the associated
models. In contrast, the motivation behind constructing a probabilistic model for link grammar
lies in the fact that it is a very simple formalism, for which there exists an efficient parsing algorithm.
This suggests that the parameters of a highly lexical model for link grammar might be estimated on
very large amounts of text, giving the words themselves the ability to fully exercise their statistical
rights as well as their grammatical proclivities. In this way one can hope to contest the unreasonable
dominion that the insipid trigram holds over probabilistic models of natural language.

Link grammar

The best way to explain the basics of link grammar is to discuss an example of a linkage. Figure 1
shows how a linkage is formed when the words, thought of as vertices, are connected by labelled
arcs so that the resulting graph is connected and planar, with all arcs written above the words,
and not more than one arc connecting any two words. The labelled arcs are referred to as links.

D; c,

Stately, plump Buck Mulligan came from the staihead

bearing a bowl of lather on which a min and a razor lay crossed.

FIGURE 1

A usage of a word w is determined by the manner in which the word is linked to the righta nd
to the left in a sentence. In Figure 1, for example, the word "came" is seen to be preceded by a
subject, and followed by two adverbial phrases, separated by a comma. This usage of "came" is
characterized by an S connector on the left, and two right EV connectors, separated by a Coma
connector. We can thus say that one usage of the word "came" is ((S), (EV, Coma, EV)). Similarly, a
usage of the word "and" is ((N), (S, N)); that is, it may coordinate two noun phrases as the subject of
a verb. Of course, the labels in the above examples are quite simple; to inco-porate more structure,
it would be natural for the connectors to be represented by feature structures, and for linking to
make use of unification.

A dictionary specifies all possible usages of the words in the vocabulary. A usage will also be
referred to as a disjunct, and is represented by a pair of ordered lists

d = ((Im,l~,.,l, (ri,r2,... ,n)).

The l's are left connectors and the ri's are right connectors. Links are formed for a word W with
disjunct d by connecting each of the left connectors Ii of d to a right connector 'i for some word Li
to the left of W, and and by similariy connecting each right connector ri of d to the left connector
Ii of some word Ri to the right of W. In Figure 1, for example, the left N connector in the disjunct
((N), (S, N)) for the word "and" is connected to the right N connector in the ((A), (N)) disjunct for
"mirror." The lists of left and right-connectors are ordered, implying that the words to which
11,12,... are connected are decreasing in distance to the left of W, and the words to which r, are
connected are decreasing in distance to the right of W. We will make use of the notation which for
a disjunct d = ((l1,,,-1,.. . ,11), (rl,r2,... ,r,.)) identifies 41i = !i+I in case i < m, and 41'm = NIL.
Similarly, we set ric. = ri+l for j < n and r,, = N.L. The first left connector of d is denoted by
left [d] = 11, and the first right connector is right [d] = rl. Of course, it may be that left [d] = NIL or
right (dJ = NIL. In short, a disjunct can be viewed as consisting of two linked lists of connectors.

A parse or linkage of a sentence is determined by selecting a disjunct for each word, and choosing
a collection of links among the connectors of these disjuncts so that: the graph with words as
vertices and links as edges is connected, the links (when drawn above the words) do not cross,
each connector of each chosen disjunct is the end point of exactly on, link, and the connectors
at opposite ends of each link match. If no such linkage exists for a sequence of words, then that
sequence is not in the language defined by the link grammar.

We refer the reader to (13] for more information about link grammars. That report describes a

2

tera notation for use in writing link grammars, the workings of a wide-coverage link grammar for
English, and efficient algorithms and heuristics for parsing sentences in a link grammar.

Link grammars resemble two other context-free grammatical formalisms: categorial grammars [11]
and dependency grammars (7, 10]. Both link grammar and categorial grammar are highly lexical.
The cancellation operator in a categorial grammar derivation is similar to linking process in a link
grammar. In fact, it is possible to take a categorial grammar and generate an equivalent link gram-
mar. (The reverse seems to be much more difficult.) Dep'mdency grammars, like link grammars,
involve drawing links between the words of a sentence. However, they are not lexical, and (as
far as we know) lack a parsing algorithm of efficiency comparable to that of link grammars. Our
approach to probabilistic modeling of grammar depends on the existence of an efficient parsing
algorithm, and on having enough flexibility to represent the bigram and trigram models within the
same framework.

The Recognition Algorithm

An algorithm for parsing with link grammar is presented in [13]. The algorithm proceeds by
constructing links in a top-down fashion. The recursive step is to count all linkages between a left
word L and a right word R which make use of the (right) connector I for L and the (left) connector
r for R, assuming that I and r are connected via links that have already been made. The algorithm
proceeds by checking for each disjunct d of each word L < W < R, whether a connection can be
made between d and I or r. There are three possibilities. It may be the case that left [d] links to I
and right [d] is either NIL or remains unconnected. Or, right [d] may link to r and left [d] is NIL or
unconnected. Alternatively, it may be that left (d] is connected to I and right [d] is connected to r.

As a matter of notation, we'll refer to the words in a sentence S = WOW 2 ... WN-1 by using the
indices 0,1,.... N - 1. Also, well introduce the boundary word WN for convenience, assigning to
it the single disjunct ((NIL), (NIL)). Each word 0 :_ W < N has an associated set V(W) of possible
disjuncts. Let c(L, R, 1, r) be the number of ways of constructing a sublinkage between L and R
using I and r, as described in [13]. Then c(L, L + 1, l, r) is equal to one in case I = r = NIL and is
equal to zero otherwise.

The following is a recursive expression for c(L, R, 1, r), on which the dynamic programming
algorithm of [13] is based:

c(L, R, l, r) =

E E [match(l, lft[d]) c(L, W, I,, 4left[d]) c(W, R, right [d], r)
L<W<R dEV(W)

+ match(l, left [d]) match(right [d], r) c(L, W, lI,, 4left[dI) c(W, R, right [d]a, 47)

+ 6NI(l) match(right [dl, r) c(L, W, 1, left [d]) c(W, R, right (d]C", 4r)]

Here 6 is the standard delta function and match is an indicator function, taking values 0 and 1,
which determines whether two connectors may be joined to form a link. The fnnction match must
only satisfy match(c, NIL) = match(NIL, c) = 0 for any connector c, but is otherwise completely
general, and could, for example, take into account unification of feature structures. The term
6

NxL(1) is included to prevent overcounting of linkages. Since there are at most (N) triples (L, W, R)
to be tried, the complexity of the parsing algorithm is O(D 3 . N 3), where D is an upper bound of

3

the number of disjuncts of an arbitrary word in the grammar. The total number of linkaes, or
parses, of the sentence S = Wo0... WN _ is EdEV(o) 4m (ket[d]) c(O,(N, righ)t d],N).

The Probabilistic Model

It is natural to develop a generative probabilistic model of link grammar. In using term generative
we imply that the model will assign total probability mass one to the language of the grammar.
The usual probabilistic model of context-free phrase structure grammar, given by the parameters
PA(A -* B C) and PA(A -+ w), also has this property.

Just as the basic operation of context-free phrase structure grammar is rewriting, the basic
operation of link grammar is linking. A link depends on two connectors, a left connector I and
a right connector r. These are the analogues of a nonterminal A which is to be rewritten for a
phrase structure grammar. Given I and r, a link is formed by first choosing a word W to link to,
followed by a choice of disjunct d for the word. Finally, an orientation is chosen for the link by
deciding whether d links to 1, to r, or to both I and r. In fact, we may also take into account the
identities of the words L and R to which the connectors I and r are associated. This suggests the
set of parameters

Pr(W,d,O I L,R,l,r)

for a probabilistic model. Here 0 is a random variable representing the orientation of the link,
which we will allow to have values *-, --+, or +.+, in case d is linked to 1, to r, or to both I and r.
Of course, this probability may be decomposed as

Pr(W,d,OI L,Rl,r) = Pr(WI L,R,1,r)Pr(d I W,L,R,I,r)Pr(0 1 d,WL,R,l,r)

Since we are forming conditional probabilities on a set of events which is potentially quite large
for a reasonable grammar and vocabulary for natural language, it may be impossible in practice to
form reliable estimates for them. We thus approximate these probabilities as

Pr(Wd,O I L,R,1,r) s Pr(W I L,R,l,r)Pr(d I Wl,r)Pr(0 I d,l,r) .

In addition, we require the joint probability Pr(Wo, do) of an initial word and disjunct.

The probability of a linkage is the product of all its link probabilities. That is, we can express
a linkage C as a set of links Z = {(W,d,0,L,R,1,r)} together with an initial disjunct do, and we
assign to C probability

Pr($S,) = Pr(Wo,do) [lIPr(W,d,0 1 L,R,1,r)

where the product is taken over all links in C, and where we have noted the dependence on
the sentence S being generated. This probability is thus to be thought of as the probability of
generating S with the linkage C. The cross-entropy of a corpus S1,S2, with respect to the
uniform distribution on individual sentences is then given by

HI = -7- log Pr(S,,C)

for some normalizing term 7. In the following, we will describe an algorithm to determine a set of
parameters which locally minimize this entropy.

4

Finite-state appraximations

Link grammars may be constructed in such a way that the corresponding probabilistic model is
a finite-state Markov chain corresponding to the n-gram model. For example, the link grammar
whose corresponding probabilistic model is equivalent to the bigram model is depicted in Figure 2.

III a b c d e f g

FIGURE 2: A BIGRAM MODEL

Suppose, as another example, that the grammar is made up of a dictionary where a word to has
the set of disjuncts

((*),)

((ZWa), (toy))
((Wto), (NM))

where x and y represent arbitrary words in the vocabulary. The disjunct ((wy), (yto)) represents
the assumption that any two words x and y may precede a word to. This information is passed
through the left connector. The identity of the previous word y and the current word to is then
passed through the right connector. The disjunct ((*),(to)) represents the modeling assumption
that any word can begin a sentence. Finally, the disjunct ((wy), (NIL)) allows any word to be the
last word in a sentence. An artificial word ///, called "the wall," is introduced to represent the
sentence boundary (13], and is given the single disjunct ((NIL),(*)). Given this set of disjuncts,
each sentence has a unique linkage, which is represented in Figure 3. The resulting probabilistic
model is precisely the familiar trigram model.

/// a b c d e f g

FIGURE 3: A TRIGRAM MODEL

Of course, since the generative power of link grammar is context-free, any finite state model
can be represented. The point to be made with the above example, however, is that because of the
lexical nature of the probabilistic model that is being proposed, finite-state language models such
as the n-gram model and its derivatives can be easily and naturally represented in a probabilistic
model of link grammar. Probabilistic link grammar thus provides a uniform framework for finite-
state as well as linguistically motivated models of natural language.

In order to capture the trigram model in a traditional probabilistic context-free grammar, the
following grammar could be used, where A., is a nonterminal parameterized by the "previous"
words x and y.

S - w A,,,
A .,, • w A,,

A," to

5

However, it would certainly be awkward, at best, to incorporate the above productions into a
natural language grammar. The essence of the problem, of course, is that the Griebach normal
form of a natural language grammar rarely provides a strong equivalence, but rather distorts the
trees in a linguistically senseless fashion.

riverrim , past Eve and Adam's, from swerve of shore to bend of bay

brings us by a commodius vicus of recizrulaion back to Howth Casle and Environs.

FIGURE 4: A BIGRAM/GRAMMAX MODEL

On the other hand, the corresponding finite-state links could be easily included into a link gram-
mar for natural language in a manner which preserves the relevant structure. While the formalisms
are equivalent from the point-of-view of generative power, the absence of explicit constituents as
well as the head-driven nature of link grammar lends it well to probabilistic modeling. As an
example, in the linkage displayed in Figure 3, subject-verb agreement, object-verb attachment,
and adverbial clause attachment are handled using grammar, while the remaining words within
each clause phrase are related by the bigram model. In addition, the logical relation between the
words "from" and "to" is represented in a link. In this manner long-distance dependencies can be
seamlessly incorporated into a bigram or trigram model.

The Training Algorithm

We have developed and implemented an algorithm for determining maximum-likelihood estimates
of the parameters of probabilistic link grammar. The algorithm is in the spirit of the Inside-Outside
algorithm [8], which, in turn, is a special case of the EM algorithm [2]. The algorithm computes
two types of probabilities, which we refer to as inside probabilities Prz and outside probabilities
Pro. Intuitively, the inside probability Prz(L, R, 1, r) is the probability that the words between L
and R can be linked together so that the linking requirements of connectors I and r are satisfied.
The term Pro(L, R, L, r) is the probability that the words outside of the words L and R are linked
together so that the linking requirements outside of the connectors I and r are satisfied. Given
these probabilities, the probability that the sentence Wo,..., WN-1 is generated by the grammar
is equal to

Pr(S) = • Pr(Wo, do) Pr-(O, N, right [da], rNm).
d0 eT(Wo)

The inside probabilities are computed recursively through the relations

Prl(L, R, 1,r)

E E [Pr(W,d,- I L,R,1,r)VPr(L,W,lc,•41eft[d])Prr(W,R, right[d ,r)
L<W<R dEV(W)

+ Pr(W,d,• I L,R,L,r)Prr(L,W,I>,41eft[d]) Prz(W,R, right[d]-, 4r)

+ Pr(W,d,-- I L,R,1,r)Prl(L,W,1,left [d]) Prz(W,R, right[d]c',,r)]

6

The outside probabilites are computed by first setting

Pro(O,N, right[d],mN) = Pr(Wo, d)

for each disjunct d E D(Wo) with left[d] = Nm. The remaining outside probabilities are then

obtained as a sum of four terms,

Pro(L, R,1, r) = Pr'o~f(L, R,1, r) + Pr~ft(L, R,1, r) + Pr;#t"(L, R,1, r) + Pro9&if(L, R,1, r)

where these probabilities are computed recursively through the following relations:

Pr'0'f(L,W,Iv,41eft[d]) = E FPro(L,R,l,r)x
R>W r

[Pr(W,d,s- I L,R,1,r)Prz(W,R, right[d],r) + Pr(W,d,4-e I L,R,L,r)Prr(W,R, right[AD.,4r)]

Pr;9Ai(WRright[d]v-,4r)= F FPro(LRlr)x
L<W I

[Pr(W,d,- I L,R,l,r) Prz(L, W,l, left[d]) + Pr(W,d, 4-I L,R,l,r) Pry(L, W,lt, 4left[d])]

Pro$et(L, W,l, left [d]) = E 2Pro(L,R,l, r)Pr(W,d,-- L,R,l,r) Prr(W,R, right[d]t, r)
R>W r

Pr•ot(W,R,right[d],r) = E EPro(L,R,l,r)Pr(W,d,4-- L,R,l,r)Prr(L,W, l,,-left[d]).
L<W I

The expected number of times that, for example, a word W is linked to words L and R through
connectors I and r in a given sentence S is then determined by

Count(W,L,R,l,r) = Pro(L,R,l,r)Pr(S)- 1 1 Pr(WI L,R,l,r) Pr(dl W,,r)
dE-V(W)

Pr (- I d, 1, r) Prr(L, W, lg2-, -left [dJ)Prr(W, R, right [d], r) +

Pr (-. I d, 1, r) PrI(L, W, 1, left [d])Prr(W, R, right [d]Ci, 4r) +

Pr(4 I d, l, r) PrI(L, W, D, 4/eft[d])Prr(W, R, right [d]c-, 4r) }

The counts for the parameters Pr(d I Wl, r) and Pr (0 I d, l, r) are obtained in a similar way.
For completeness, we list the expected counts below.

Count(d,W,l,r) = Pr(S)-1 E-Pro(L,R,l,r)Pr(WI L,R,l,r) Pr(d I W,l,r)
L,R

Pr(.- d,l, r) Pr(L, W, l,, 41left[d])Prl(W, R, right[d], r) +

Pr (- d, 1,r) Prr(L, W, 1, left [d])Prr(W, R, right [d], 4r) +

Pr(4-* d,l,r) Prz(L, W, ,lo4Left[d])Prz(W,R, right[d],, 4r) }

7

Count(.--,d,l,r) = Pr(S)-1 P ro(LR,I,r)Pr(W I L,R,l,r) Pr(dI W,l,r) x
L,WIR

Pr(d,l, r) Prr(L, W,l.., 4ft [d])Prlr(W, A, right [d],r)

Count(-+,d,1,r) = Pr(S)-' • Pro(L,R,,r)PrI(W I L,R,1, r) Pr(d I W,1, r) x
LIWIR

Pr(-. I d, l, r) Prr(L, W, lft [d])Prr(W, R, right [dpy4r)

Count('-+,d,L,r) = Pr(S)-1 E Pro(L,R,1,r)Pr(WI L,R,1,r) Pr(d I W,1,r) x
L,WR

Pr (.-e j d, 1, r) Prx(L, W, 1., 4•ft [d])Prr(W, R, right [dlt., 4r)

The algorithm for obtaining these counts is derived from the dynamic programming algorithm
given in [131. The algorithm involves three passes through the sentence. The first pass computes
the inside probabilities in much the same way that the basic recognition algorithm computes the
number of linkages. A second pass computes the outside probabilities. Finally, a third pass updates
the counts for the parameters of the model in a manner suggested by the above equations.

While the algorithm that we have outlined is in the spirit of the inside-outside algorithm, the
actual computations in the two algorithms are quite different. First, the inside pass proceeds
in a top-down manner for link grammar, while the usual inside-outside algorithm is based upon
the bottom-up CKY chart parsing algorithm. On the other hand, while the outside pass for link
grammar is top-down, it differs from the outside pass for the inside-outside algorithm in that the
computation is structured exactly like the inside pass. Thus, there is a symmetry that does not
exist in the usual algorithm. In addition, there is an efficient check on the correctness of the
computation. This lies in the fact that for each word W in a liven sentence S, the total count

EL,R,L,r Count(W, L, R, 1, r) must be equal to one, where the sum is taken over all L, R, 1, and r
which occur in a linkage of S.

Smoothing

Obtaining reliable estimates of the parameters of probabilistic language models is always a fun-
damental issue. In the case of the models proposed above, this is especially a concern due to
the large number of parameters. Several methods of "smoothing" the estimates naturally suggest
themselves. One such approach is to form the smoothed estimates

Pr(WI L,R,1,r)=7- 1y,r(W)[APr(WI L,R)+(1- A)Pr(WI L,R,l,r)]

where 61,,(W) is equal to one in case the word W has a disjunct that can link to either 1 or r, and
zero otherwise, and -f is a normalizing constant. This method of smoothing is attractive since the
probabilities Pr (W I L, R) can be obtained from unparsed text. In fact, since for a given sentence

8

S there e (W ways of choosing words that may potentially participate together in a linking, if
we assume that the sentences in a corpus have lengths which are Poisson-distributed with a mean
of 25, then there is an average of 2604 word triples per sentence, or approximately 100 times the
number of usual trigrams. We can view the probability Pr (W I L, R) as the prior probability
that the triple (L, W, R) forms a grammatical trigram.

Having obtained the maximum-likelihood estimates of the parameters of our model, we may
then obtain the posterior probabilities of grammatical trigrams as

Fr'(W[I L,R) ff•Pr(W I L,R,l,r)Pr(l,r I L,R)

1,t

Here the probabilities Pr (1, r I L, R) are obtained through the joint probabilities Pr (L, R, 1, r)
which are estimated through the expected counts

Count(L, R, 1, r) = Pro(L, R, 1, r)Pr-(L, R, 1, r).

Further refinements to the smoothed distributions can be nade using standard methods of deleted
interpolation [1].

Prospects

The above class of models can be extended in many different directions. For example, decision
trees can be used to estimate the probabilitie-., as we have in done in various other problems [4, 5].
Increasing the complexity of the models in this manner can promote the generative power to the
class of context-sensitive languages. From a less formal point of view, such an extension would
allow the statistics to better capture the long-range dependencies which are inherent in any large
corpus. But the essence of the class of probabilistic models that has been proposed is that the
parameters are highly lexical, though simple. In proceeding to actually carry out a program for
constructing such models, one can at least begin to reach for the gauntlet [6] that has been thrown
down in the name of the maligned trigram.

References

[1] L. R. Bahl, F. Jelinek, and R. L. Mercer. A Maximum likelihood approach to continuous
speech recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. PAMI-5,
No. 2, pp. 179-190, 1983.

[2] L. E. Baum. An inequality and associated maximization technique in statistical estimation of
probabilistic functions of a Markov process. Inequalities, 627(3):1-8, 1972.

[3] E. Black, J. Lafferty, and S. Roukos. Development, evaluation, and results for a broad-coverage
probabilistic grammar of English-language computer manuals. To appear in Proceedings of the
ACL, 1992.

[4] E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mercer, and S. Roukos. Towards history-
based grammars: Using richer models for probabilistic parsing. In Proceedings of the DARPA
Speech and Natural Language Workshop, Arden House, February 1992.

9

[5] E. Black, F. Jelinek, J. Lafferty, B. Mercer, and S. Roukos. Decision tree models applied to
the labelling of text with parts-of-speech. In Proceedings of the DARPA Speech and Natural
Language Workshop, Arden House, February 1992.

[61 P. Brown, S. Della Pietra, V. Della Pietra, J. Lai, and R. Mercer. An estimate of an upper
bound for the entropy of English. Computational Linguistics, 18(2):31-40, 1992.

[7] H. Gaifman. Dependency s--stems and phrase-structure systems. Information and Control 8,
1965, Pages 304-337.

[8] F. Jelinek, J. D. Lafferty, and R. L. Mercer. Basic methods of probabilistic context-free gram-
mars. In Speech Recognition and Understand;ng: Recent Advances, Trends, and Applications,
P. Laface and &. De Mori, editors. Springer Verlag, Series F: Computer and Systems Sciences,
vol. 75, 1992.

[9] F. Jelinek and J. D. Lafferty. Computation of the probability of initial substring generation
by stochastic context-free grammars. Computational Linguistics, 17(3):315-323, 1991.

[10] I. A. Meituk. Dependency, Syntaz: Theory and Practice, State University of New York Press
1988.

[11] R. T. Oehrle, E. Bach, and D. Wheeleri Editors. Categorial Grammars and Natural Language
Structure. D. Reidel Publishing Company, 1988.

[12] Y. Schabes. Stochastic lexicalized tree-adjoining grammars. In Proceedings of COLING-92,
Nantes, France, July 1992.

[13] D. Sleator and D. Temperley. Parsing English with a Link Grammar. Technical report CMU-
CS-91-196, Department of Computer Science, Carnegie Mellon University, 1991.

[14] C. E. Shannon. Prediction and entropy of printed English. Bell Syst. Tech. J., Vol. 30, pp.
50-64, 1951.

10

